120 research outputs found

    Stimulus preference in rats

    Get PDF

    Effect of plant root symbionts on performance of native woody species in competition with an invasive grass in multispecies microcosms

    Get PDF
    The majority of terrestrial plants form mutualistic associations with arbuscular mycorrhizal fungi (AMF) and rhizobia (i.e., nitrogen-fixing bacteria). Understanding these associations has important implications for ecological theory and for restoration practice. Here, we tested whether the presence of AMF and rhizobia influences the performance of native woody plants invaded by a non-native grass in experimental microcosms. We planted eight plant species (i.e., Acacia acuminata, A. microbotrya, Eucalyptus loxophleba subsp. loxophleba, E. astringens, Calothamnus quadrifidus, Callistemon phoeniceus, Hakea lissocarpha and H. prostrata) in microcosms of field-conditioned soil with and without addition of AMF and rhizobia in a fully factorial experimental design. After seedling establishment, we seeded half the microcosms with an invasive grass Bromus diandrus. We measured shoot and root biomass of native plants and Bromus, and on roots, the percentage colonization by AMF, number of rhizobia-forming nodules and number of proteaceous root clusters. We found no effect of plant root symbionts or Bromus addition on performance of myrtaceous, and as predicted, proteaceous species as they rely little or not at all on AMF and rhizobia. Soil treatments with AMF and rhizobia had a strong positive effect (i.e., larger biomass) on native legumes (A. microbotrya and A. acuminata). However, the beneficial effect of root symbionts on legumes became negative (i.e., lower biomass and less nodules) if Bromus was present, especially for one legume, i.e., A. acuminata, suggesting a disruptive effect of the invader on the mutualism. We also found a stimulating effect of Bromus on root nodule production in A. microbotrya and AMF colonization in A. acuminata which could be indicative of legumes’ increased resource acquisition requirement, i.e., for nitrogen and phosphorus, respectively, in response to the Bromus addition. We have demonstrated the importance of measuring belowground effects because the aboveground effects gave limited indication of the effects occurring belowground

    Shapiro delay in the PSR J1640+2224 binary system

    Full text link
    We present the results of precision timing observations of the binary millisecond pulsar PSR J1640+2224. Combining the pulse arrival time measurements made with the Effelsberg 100-m radio telescope and the Arecibo 305-m radio telescope, we have extended the existing timing model of the pulsar to search for a presence of the effect of a general-relativistic Shapiro delay in the data. At the currently attainable precision level, the observed amplitude of the effect constrains the companion mass to m_2=0.15^{+0.08}_{-0.05} M_\sun, which is consistent with the estimates obtained from optical observations of the white dwarf companion and with the mass range predicted by theories of binary evolution. The measured shape of the Shapiro delay curve restricts the range of possible orbital inclinations of the PSR J1640+2224 system to 78∘≀i≀88∘78^{\circ}\le i\le 88^{\circ}. The pulsar offers excellent prospects to significantly tighten these constraints in the near future.Comment: 12 pages, 4 figures, accepted for publication in Ap

    Methods For Creating XSEDE Compatible Clusters

    Get PDF
    The Extreme Science and Engineering Discovery Environment has created a suite of software that is collectively known as the basic XSEDE-compatible cluster build. It has been distributed as a Rocks roll for some time. It is now available as individual RPM packages, so that it can be downloaded and installed in portions as appropriate on existing and working clusters. In this paper, we explain the concept of the XSEDE-compatible cluster and explain how to install individual components as RPMs through use of Puppet and the XSEDE compatible cluster YUM repository.This document was developed with support from National Science Foundation (NSF) grant OCI-1053575. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF

    A Binary Millisecond Pulsar in Globular Cluster NGC6544

    Get PDF
    We report the detection of a new 3.06 ms binary pulsar in the globular cluster NGC6544 using a Fourier-domain ``acceleration'' search. With an implied companion mass of ~0.01 solar masses and an orbital period of only P_b~1.7 hours, it displays very similar orbital properties to many pulsars which are eclipsed by their companion winds. The orbital period is the second shortest of known binary pulsars after 47 Tuc R. The measured flux density of 1.3 +/- 0.4 mJy at 1332 MHz indicates that the pulsar is almost certainly the known steep-spectrum point source near the core of NGC6544.Comment: Accepted by ApJ Letters on 11 October 2000, 5 page

    Refractory hyperparathyroidism with a T3 bony lesion—differential diagnoses

    Full text link
    We report a case of severe hyperparathyroidism complicated by osteitis fibrosa cystica in an 83-year-old man post-myocardial infarction. The lesions were evident on magnetic resonance imaging only. A diagnosis of parathyroid carcinoma was considered due to clinical appearance of the parathyroid intraoperatively and the presence of an invasive T3 lesion mimicking metastatic disease. Differentiating parathyroid carcinoma from the benign causes at presentation can be difficult due to overlapping clinical, biochemical, radiological and histological features. The presence of bony lesions increases the diagnostic complexity of the case and demonstrates the challenges involved in the management of this disorder

    Advances in restoration ecology: rising to the challenges of the coming decades

    Get PDF
    Simultaneous environmental changes challenge biodiversity persistence and human wellbeing. The science and practice of restoration ecology, in collaboration with other disciplines, can contribute to overcoming these challenges. This endeavor requires a solid conceptual foundation based in empirical research which confronts, tests and influences theoretical developments. We review conceptual developments in restoration ecology over the last 30 years. We frame our review in the context of changing restoration goals which reflect increased societal awareness of the scale of environmental degradation and the recognition that inter-disciplinary approaches are needed to tackle environmental problems. Restoration ecology now encompasses facilitative interactions and network dynamics, trophic cascades, and above- and below ground linkages. It operates in a non-equilibrium, alternative states framework, at the landscape scale, and in response to changing environmental, economic and social conditions. Progress has been marked by conceptual advances in the fields of trait-environment relationships, community assembly, and understanding the links between biodiversity and ecosystem functioning. Conceptual and practical advances have been enhanced by applying evolving technologies, including treatments to increase seed germination and overcome recruitment bottlenecks, high throughput DNA sequencing to elucidate soil community structure and function, and advances in satellite technology and GPS tracking to monitor habitat use. The synthesis of these technologies with systematic reviews of context dependencies in restoration success, model based analyses and consideration of complex socio-ecological systems will allow generalizations to inform evidence based interventions. Ongoing challenges include setting realistic, socially acceptable goals for restoration under changing environmental conditions, and prioritizing actions in an increasingly space-competitive world. Ethical questions also surround the use of genetically modified material, translocations, taxon substitutions, and de-extinction, in restoration ecology. Addressing these issues, as the Ecological Society of America looks to its next century, will require current and future generations of researchers and practitioners, including economists, engineers, philosophers, landscape architects, social scientists and restoration ecologists, to work together with communities and governments to rise to the environmental challenges of the coming decades
    • 

    corecore